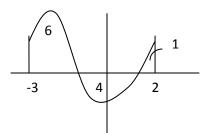
Name_____ Date_____Hour_____

Find the total area of the region bound by the x-axis and a function f(x) on the given interval:

- 1. f(x) = 2x 4, [0,3]
- 2. $f(x) = -x^2 + 4$ [-2,2]
- 3. Evaluate $\int_{-3}^{2} f(x) dx$ if the three regions on the graph have the given areas. (Remember integral=net area)



Given the following integrals, use the rules of integration to find each value.

$$\int_{-5}^{1} f(x)dx = 3 \qquad \int_{4}^{1} f(x)dx = -6 \qquad \int_{1}^{4} g(x)dx = 2$$

- $4. \quad \int_0^0 g(x) \, dx$
- 5. $\int_{1}^{4} 3f(x) \, dx$
- $6. \quad \int_1^4 (f(x) 2g(x)) dx$
- 7. $\int_{-5}^{4} f(x) \, dx$
- 8. A function f is continuous on the closed interval [1, 12] and has values given in the table below. Use four subintervals to find the trapezoidal approximation of $\int_{1}^{12} f(x) dx$

x	1	2	5	9	12
<i>f(x)</i>	7	1	0	-8	5

9. Use the table above to compute the left rectangular approximation of the integral using four rectangles.

Use the Fundamental Theorem of Calculus to find the following:

10.
$$\frac{d}{dx} \int_{3}^{x} \sin(2t) dt$$

11. $\frac{d}{dx} \int_{0}^{3x^{2}} \left(\frac{1-t}{t}\right) dt$
12. $\frac{d}{dx} \int_{-5}^{2x} \tan u \, du$
13. If $F(x) = \int_{0}^{x} (9\sqrt{t} + 2) dt$, find $F'(1)$
14. If $F(x) = \int_{-2}^{x} 2\sec u \, du$, find $F'(\pi)$

Solve the definite integral WITHOUT the use of a calculator:

15. $\int_{1}^{4} (2x+7) \, dx$

$$16. \int_1^9 \frac{3}{\sqrt{x}} dx$$

$$17. \, \int_0^{\pi/4} \sin x \, dx$$

18. Find all values for k that satisfy the following integral:

$$\int_{2}^{\kappa} 4u du = 10$$

19. Construct a function G(x) that satisfies the following conditions: G(x) is an antiderivative of $f(x) \rightarrow G'(x) = f(x)$ G(1) = 3. **Hint- use the following format: $G(x) = \int_a^x f(t)dt + C$

If G(x) is an antiderivative for f(x) and G(1) = 4, then G(5) = ?

Review Topics

Continuity/Differentiability Rules for derivatives INCLUDING chain rule, product rule, quotient rule, and ALL SPECIAL FORMULAS!

Free Response Style Questions

Let *f* be a function that is twice differentiable for all real numbers. The table gives values of *f* for selected points in the closed interval $3 \le x \le 11$.

x	3	5	6	9	11			
f(x)	2	1	-3	2	9			

a. Estimate f'(4). Show all work. **Remember, derivative = slope

- b. Evaluate $\int_{3}^{11} (3f'(x) 1) dx$
- c. Use a right Riemann sum with 4 subintervals indicated by the table above to approximate the integral, $\int_{2}^{13} f(x) dx$
- d. Use a trapezoidal approximation with 4 subintervals to approximate the integral, $\int_{2}^{13} f(x) dx$
- 2. Let f be the function defined by $f(x) = ke^x + \ln x$ for x > 0, where k is a positive constant. a. Find f'(x) and f''(x)
 - b. For what value of the constant k does f have a critical point at x = 1? For this value of k, determine whether f has a relative minimum, maximum, or neither at x = 1. Justify your answer.
 - c. If f has a point of inflection, write an equation for k in terms of x.
- 3. Repeat #2 with $g(x) = kx^3 + \ln x$