\qquad
\qquad

Find the total area of the region bound by the x-axis and a function $f(x)$ on the given interval:

1. $f(x)=2 x-4,[0,3]$
2. $f(x)=-x^{2}+4[-2,2]$
3. Evaluate $\int_{-3}^{2} f(x) d x$ if the three regions on the graph have the given areas. (Remember integral=net area)

Given the following integrals, use the rules of integration to find each value.

$$
\int_{-5}^{1} f(x) d x=3 \quad \int_{4}^{1} f(x) d x=-6 \quad \int_{1}^{4} g(x) d x=2
$$

4. $\int_{0}^{0} g(x) d x$
5. $\int_{1}^{4} 3 f(x) d x$
6. $\int_{1}^{4}(f(x)-2 g(x)) d x$
7. $\int_{-5}^{4} f(x) d x$
8. A function f is continuous on the closed interval $[1,12]$ and has values given in the table below. Use four subintervals to find the trapezoidal approximation of $\int_{1}^{12} f(x) d x$

x	1	2	5	9	12
$f(x)$	7	1	0	-8	5

9. Use the table above to compute the left rectangular approximation of the integral using four rectangles.

Use the Fundamental Theorem of Calculus to find the following:
10. $\frac{d}{d x} \int_{3}^{x} \sin (2 t) d t$
11. $\frac{d}{d x} \int_{0}^{3 x^{2}}\left(\frac{1-t}{t}\right) d t$
12. $\frac{d}{d x} \int_{-5}^{2 x} \tan u d u$
13. If $F(x)=\int_{0}^{x}(9 \sqrt{t}+2) d t$, find $F^{\prime}(1)$
14. If $F(x)=\int_{-2}^{x} 2 \sec u d u$, find $F^{\prime}(\pi)$

Solve the definite integral WITHOUT the use of a calculator:
15. $\int_{1}^{4}(2 x+7) d x$
16. $\int_{1}^{9} \frac{3}{\sqrt{x}} d x$
17. $\int_{0}^{\pi / 4} \sin x d x$
18. Find all values for k that satisfy the following integral:

$$
\int_{2}^{k} 4 u d u=10
$$

19. Construct a function $G(x)$ that satisfies the following conditions:
$G(x)$ is an antiderivative of $f(x) \rightarrow G^{\prime}(x)=f(x)$ $G(1)=3$.
**Hint- use the following format: $G(x)=\int_{a}^{x} f(t) d t+C$
If $G(x)$ is an antiderivative for $f(x)$ and $G(1)=4$, then $G(5)=$?

Review Topics

Continuity/Differentiability
Rules for derivatives INCLUDING chain rule, product rule, quotient rule, and ALL SPECIAL FORMULAS!

Let f be a function that is twice differentiable for all real numbers. The table gives values of f for selected points in the closed interval $3 \leq x \leq 11$.

x	3	5	6	9	11
$f(x)$	2	1	-3	2	9

a. Estimate $f^{\prime}(4)$. Show all work. **Remember, derivative $=$ slope
b. Evaluate $\int_{3}^{11}\left(3 f^{\prime}(x)-1\right) d x$
c. Use a right Riemann sum with 4 subintervals indicated by the table above to approximate the integral, $\int_{2}^{13} f(x) d x$
d. Use a trapezoidal approximation with 4 subintervals to approximate the integral, $\int_{2}^{13} f(x) d x$
2. Let f be the function defined by $f(x)=k e^{x}+\ln x$ for $x>0$, where k is a positive constant.
a. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$
b. For what value of the constant k does f have a critical point at $x=1$? For this value of k, determine whether f has a relative minimum, maximum, or neither at $x=1$. Justify your answer.
c. If f has a point of inflection, write an equation for k in terms of x.
3. Repeat \#2 with $g(x)=k x^{3}+\ln x$

